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Introduction : Model Problem

Model Problem - Linear Elliptic SPDE

Find u ∈ L2
ρ(Γ,H1

0 (D)) such that for almost every y ∈ Γ

∇ · (a(y, x) · ∇u(y, x)) = f (y, x) (1)

We assume that a, f are such that this problem has a unique solution rep-
resented in terms of y ∈ Γ, a finite dimensional random vector.

Such a PDE might represent ground water flow, etc.
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Introduction : Numerical Methods

Common Single Level Methods

Monte Carlo Method

• Most popular method

• Simple to implement, easily parallelizable

• Convergence rate O(M−1/2) is dimension independant, but relatively
slow

Spectral Galerkin Methods

• Higher rate of convergence

• Degrees of freedom are coupled, leading to a large linear system

• Suffers from the curse of dimensionality
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Introduction : Numerical Methods

Stochastic Collocation

For stochastic collocation we choose a set of (interpolatory) points
{yj}Mj=1 ⊂ Γ, and for each yj solve the deterministic PDE

∇ · (a(yj , x) · ∇u(yj , x)) = f (yj , x), (2)

using the finite element method to obtain a solution uh(yj , x).

Finally, we
construct our approximation by Lagrange interpolation:

IMuh(y, x) =
M∑
j=1

uh(yj , x)Ψj(y) (3)

For this scheme, we need to solve M systems of size nh. For high
dimensional spaces Γ, the number of points M needed to obtain a good
approximation can be huge!
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Multilevel Methods

History of the Multilevel Method

Multilevel methods for SPDEs derive from multigrid methods for the FEM,
and have been used most commonly in the context of Monte Carlo
methods:

• Multilevel Monte Carlo for numerical integration (S. Heinrich, 2001)

• Multilevel Monte Carlo path simulations for computational finance
(M. Giles, 2008)

• Since applied to a variety of SPDEs

Main Idea: Suppose we have a sequence of finite element solutions
uhk (y) ∈ Vhk , (with u−1 = 0). Multilevel methods are based on the
following simple identity:

uhK (y) =
K∑

k=0

uhk (y)− uhk−1
(y).
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Multilevel Stochastic Collocation : Formulation

With Monte Carlo methods, we are usually interested in computing some
statistics of the approximation uhK (y). For instance, we can compute
expectation using sample averages:

E(uhK (y)) ≈ uMLMC
hK

=
K∑

k=0

1

MK−k

MK−k∑
j=1

(
uhk (yj)− uhk−1

(yj)
)
. (4)

For stochastic collocation, we interpolate the differences at different
resolutions. Suppose we have a sequence of interpolation operators {Ilk}
with increasing approximation properties. Now the (fully discrete)
multilevel approximation is given by:

uML
hK

(y) =
K∑

k=0

IlK−k

(
uhk (y)− uhk−1

(y)
)
. (5)
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Multilevel Stochastic Collocation : Formulation

Error Splitting

We examine the method by considering the discretization errors
independently:

‖u − uML
hK
‖ ≤ ‖u − uhK ‖+ ‖uhK − I

MLuhK ‖
=: I + II .

The term II can be further split apart using the triangle inequality:

II = ‖
K∑

k=0

(uhk − uhk−1
)− IlK−k

(uhk − uhk−1
)‖

≤
K∑

k=0

‖( I− IlK−k
)(uhk − uhk−1

)‖.
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Multilevel Stochastic Collocation : Computational Cost

Now to compute the computational cost, we assume that the spatial
discretization converges in h as

I ≤ Csh
α
K ,

and that the stochastic interpolation operators converge according to:

‖( I− IlK−k
)(uhk − uhk−1

)‖ ≤ CI M
−µ
K−k h

β
k ,

=⇒ II ≤
K∑

k=0

CI M
−µ
K−k h

β
k .

Finally, we compute the cost of the multilevel method using the metric

Cost =
K∑

k=0

MK−k C
FEM
k h

K∑
k=0

MK−k h
−γ
k . (6)
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Multilevel Stochastic Collocation : Computational Cost

Theorem: Cost of the MLSC Method

Under our assumptions, for any ε < e−1 there exists an integer K such that

‖u − uML
hK
‖L2

ρ(Γ;H1
0 (D)) ≤ ε

and

Costε .


ε
− 1

µ , if β > µγ,

ε
− 1

µ | log ε|1+ 1
µ . if β = µγ,

ε
− 1

µ
− γµ−β

αµ , if β < µγ.

(7)

Compare to standard, single level SC:

Costε(SL) h h−γM h ε−γ/α−1/µ.

For some specific examples, β = α, and so the last line reduces to:

Costε . ε−γ/α
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Numerical Results

Example Problem:

As an example, we consider the following boundary value problem on
either D = (0, 1) or D = (0, 1)2:

−∇ · (a(ω, x)∇u(ω, x)) = 1, for x ∈ D,

u(ω, x) = 0, for x ∈ ∂D .

We take the coefficient a to be of the form

a(ω, x) = 0.5 + exp

[
N∑

n=1

√
λnbn(x)Yn(ω)

]
,

where {Yn}n∈N is a sequence of independent, uniformly distributed
random variables on [-1,1], and {λn}n∈N and {bn}n∈N are the eigenvalues
and eigenfunctions, reap., of the covariance operator with kernel function
C (x , y) = exp[−‖x − y‖1].
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Numerical Results

Results in 10D

Figure : Left: Cost versus Error for D = (0, 1)2, N = 10. Right: Number of samples per level
(predicted vs actual).
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Numerical Results

Results in 20D

Figure : Left figures: Cost versus Error for D = (0, 1), N = 20. Right figures: Number of
samples per level (predicted vs actual).
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Conclusion

Multilevel methods:

• Can be practically applied to SC methods based on sparse grids

• Reduce computational cost for a variety of stochastic sampling
methods for SPDEs.

• Work to counteract the curse of dimensionality.

• Effective when applied to SC schemes even up to 20D.
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